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Abstract
We classify the Fibonacci chains (F-chains) by their index sequences and
construct an approximately finite-dimensional (AF) C∗-algebra on the space
of F-chains as Connes did on the space of Penrose tiling. The K-theory on
this AF algebra suggests a connection between the noncommutative torus and
the space of F-chains. A noncommutative torus, which can be regarded as
the C∗-algebra of a foliation on the torus, is explicitly embedded into the AF
algebra on the space of F-chains. As a counterpart of that, we obtain a relation
between the space of F-chains and the leaf space of Kronecker foliation on the
torus using the cut-procedure of constructing F-chains. Our embedding of the
C∗-algebra of the foliation is consistent with the recent result of Landi, Lizzi,
and Szabo that the C∗-algebra of noncommutative torus can be embedded into
an AF algebra.

PACS numbers: 02.40.Gh, 61.44.Br

1. Introduction

Recently, noncommutative geometry (NCG) has been one of the most active areas in
mathematics with increasing interest and application to physics [1–3]. Not only does it
open new areas in pure mathematics but its application to physics has now reached to the
very frontiers of fundamental physics, such as string and M theories [4, 5]. Many in the
string/gravity circle now consider NCG as a very possible candidate for the underlying
mathematical framework of quantum theory of gravity [6–8]. However, applications of NCG
to physical systems have not been confined to high-energy physics. Bellissard applied NCG
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to the quantum Hall effect and explained the Hall conductivity using the K-theory on the
noncommutative algebra of functions on the Brillouin zone [9].

The quasicrystal seems to be another novel system in which we may be able to achieve a
‘quantum leap’ in progress when we adapt an NCG approach. Quasicrystals are new types of
solids with ordered atomic arrangement but with a discrete point-group symmetry forbidden
for periodic systems. The discovery of such materials in 1984 [10] has had a tremendous
impact on condensed matter physics and material science. Until then, the only known ordered
solid-state structures were crystals and solid states were considered either periodically ordered
crystals or disordered amorphous materials. The structure of this new type of solid has been
explained with Penrose tiling in which two types of tiles are arranged aperiodically [11]. One
can show that the Penrose tiling lattice has the translational order and the rotational symmetry
of observed quasicrystals by calculating their Fourier components [12]. Furthermore, Penrose
tiling models provide clues for solving the puzzle of physical realization of such structures
through the atomic interactions: that is, the question why the atoms form the complex Penrose
tiling pattern rather than a regularly repeated crystal arrangement [13,14]. However, the study
of their dynamical properties, the most important secrets of quasicrystals, is still in its infancy.
It may require a new analytical tool since quasicrystals defy the standard classical classification
of solids. NCG may be a candidate for this. Connes has already pointed out that the space
of Penrose tiling can be analysed nontrivially only with noncommutative algebra which has
a quantum mechanical nature [2]. An indication of quantum nature may lie in the fact that
the symmetry of Penrose tiling is not intuitively observed from its real-space lattice structure.
As stressed by Rabson and Mermin [15], the symmetry of Penrose tiling is easily seen in the
Fourier-transformed space through the phases of the wavefunctions in a scattering process,
which hardly play any role in the classical treatise.

Connes’ analysis of the Penrose tiling space is based on the scale invariance of the Penrose
tilings. Using inflation (see section 2), a Penrose tiling can be identified with a sequence
consisting of 0 and 1 [2, 16]. Two different sequences correspond to the same tiling if their
entries differ only in a finite number of terms. When this equivalence relation is taken into
account, the space of tilings is given by the quotient space obtained from the space of sequences
mod out by the equivalence relation. As Connes pointed out in his book [2], one can hardly
get any interesting information about this space if it is treated as an ordinary space with the
classical tools. For given any two Penrose tilings, one cannot distinguish one from the other
with any finite portion of them since it appears in both tilings [16]. This tells us that the
topology of the space of tilings is trivial, namely that the space of tilings is equivalent to a
single point. However, by treating the space of tilings as a quantum space or noncommutative
space, one can find its interesting topological invariant, the dimension group—which is not
trivial at all [2]. This is because a topologically trivial space cannot be described nontrivially
by complex-valued functions. However, with operator-valued functions on this space one can
explore the nontrivial structure of this seemingly trivial space.

The study of quasiperiodic structure using the noncommutative geometric approach was
first done by Bellissard et al [17] in a one-dimensional (1D) case. They investigated its
spectral properties and tried to construct a quantum observable algebra which plays the role
of the above-mentioned operator-valued functions. However, their investigations fell short of
geometric properties in the sense of Connes.

Recently, a study in the NCG framework was done by Landi et al [18] from the viewpoint
of the noncommutative lattice which can be regarded as a finite topological approximation of a
quantum physical model. They performed their investigation by studying the K-theory of the
approximately finite-dimensional (AF) C∗-algebra. For the Penrose tiling case, they retrieved
the Connes result.
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However, to date, not much has been known about the underlying nature of the space
of tilings. On the other hand, one can see a close resemblance of the K-theory result of
Connes to that of the noncommutative torus. In this paper, we investigate this aspect of the
tiling space. We first review Connes’ K-theory on the space of Penrose tiling and the NCG
of Kronecker foliation [2]. We do this with the space of Fibonacci chains (F-chains) which
is isomorphic to the space of Penrose tilings (see section 2). Using the ‘projection’ method
explained in section 4, both F-chains and Penrose tilings can be represented as points in the
higher-dimensional torus. However, we choose the space of F-chains (rather than the Penrose
tiling space) since its geometrical interpretation is simpler in the torus representation [19]. The
relationship between the space of F-chains and the leaf space of Kronecker foliation on the
torus is investigated using the cut-procedure of constructing F-chains. We explicitly embed
the C∗-algebra of a foliation on the torus into the AF algebra on the space of F-chains and
explain why the map from the F-chains to the leaves of foliation is surjective.

The organization of the paper is as follows. In section 2, we introduce the deflation method
of obtaining F-chains and construct the index sequences of the F-chains. The equivalence
relation between F-chains is defined based on their index sequences as in the case of Penrose
tilings [2]. We then follow the Connes construction of the AF algebra and review theK-theory
of the C∗-algebra on the space of F-chains [2]. The definition and the basic properties of
Kronecker foliation are reviewed in section 3. In section 4, we ‘lift’ the F-chains to a two-
dimensional (2D) hyperspace. This procedure naturally leads to the torus parametrization
of the F-chains. We show that the torus parametrization becomes the Kronecker foliation
on the 2-torus when the equivalence relation of F-chains is applied. This mapping from the
space of F-chains to the leaf space of the foliation is surjective. There is one ‘singular’ leaf
which corresponds to two different classes of F-chains. This ‘singularity’ is explained in
terms of both the projection method and the cut-procedure of obtaining F-chains. In section 5,
we extend the leaf space such that it can be isomorphic to the space of F-chains and embed
the C∗-algebra of leaves of foliation into an AF algebra on this extended space. We first
obtain the equivalence relations on the extended leaf space using the equivalence relation of
corresponding F-chains [2] in the finite steps. This equivalence relation partitions the space to
the finite intervals. The AF algebra is obtained as an inductive limit of the finite algebra on the
space of the finite intervals. In our concluding remarks in section 6, we summarize our results
and discuss the implication for future research in the properties of Penrose tiling.

2. Fibonacci chain and its K-theory

The F-chain is a typical example of a 1D quasiperiodic structure. An F-chain is a special
infinite sequence of two segments, say, one short S-segment and one long L-segment with the
following properties:

(1) Any finite part of the sequence appears infinite times but none of them are consecutively
repeated more than two times.

(2) One type of segment (say S) cannot be consecutively repeated (SS is not allowed).

One way to obtain this sequence of segments is the ‘deflation’ method [16]. In this method, we
start from a finite sub-chain of an F-chain. We then operate the substitution (deflation) rule,
S → L and L → LS, iteratively to build successive strings with increasing length. At any
point in the chain, the type of segment (L or S) is uniquely determined by the chosen starting
sequence. Figure 1 shows such successive iterations when the starting sequence is just one
segment L. An infinite number of iterative deflations produce an F-chain.
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Figure 1. A way of constructing an F-chain using deflation. In each deflation step, every S segment
is replaced by L and every L segment is replaced by LS. An infinite number of iterative deflations
produce an F-chain.
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Figure 2. Successive inflations of an F-chain F produce a sequence of F-chains F1, F2, and so on.
For the segment denoted by the triangle in F , the index sequence is given by (0, 0, 1, 0, 0, 0, . . .)
whereas that for the segment denoted by the circle is given by (1, 0, 1, 0, 1, 0, 0, . . .).

The inverse process of ‘deflation’ is ‘inflation’. Now we begin with an F-chain F of two
segments L and S and apply a composition (inflation), LS → L and L→ S. This produces
another F-chain F1 of the two segments ofL1 and S1, whereL1 = LS and S1 = L. Successive
applications of the compositions yield a series of F-chains Fn of two segmentsLn and Sn where
Ln = Ln−1Sn−1 and Sn = Ln−1 with L0 := L and S0 := S as shown in figure 2.

This naturally introduces the index sequences of the chains [16]. For a given segment
α in the original F-chain F , the index sequence i(F, α) is defined as an infinite sequence of
integers (a0, a1, a2, . . .) where an = 1 or 0 according as whether α belongs to an Sn or Ln
segment in Fn for n = 0, 1, . . . . From the inflation rule (LS → L, L→ S), it is clear that an
S segment in Fn must belong to an L segment in Fn+1, that is, an=1 implies an+1=0 for an
index sequence (an). In fact, one can show that the set of possible index sequences i(F, α) of
F-chains is the set Z of sequences (an) where an ∈ 0, 1 with an=1 �⇒ an+1=0 [16]. (Z is
homeomorphic to the Cantor set. For details, see [31].)

Figure 2 illustrates the way of constructing the index sequence using inflation. For
the segment denoted by the triangle in F , the index sequence (an) is given by (an) =
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(0, 0, 1, 0, 0, 0, . . .) since this segment belongs to L,L, S, L,L,L segments in the F , F1,
F2, F3, F4 and F5 chains respectively. Similarly, the index sequence (bn) for the segment
denoted by the circle is given by (bn) = (1, 0, 1, 0, 1, 0, 0, . . .). Note that the indices in both
sequences are the same for n � 5 since both the triangle and circle segments in F belongs
to the same segments for n � 5 chains. In fact, the inflation will make any two segments
in F separated by a finite distance belong to the same segment in Fn for sufficiently large
n. Therefore, for the index sequences, (an) = i(F, α) and (a′n) = i(F, α′) from two given
segments in the same chain, there must be an integerM such that a′n = an for all n > M . This
naturally leads to the following definition of the equivalence relation R on Z;

(an) ∼ (a′n) iff there is an integerM > 0 such that an = a′n for all n > M. (1)

With this equivalence relation, it is obvious that any two index sequences from the same F-chain
are in the same equivalence class.

Conversely, one can also show that any two different sequences in Z with an = a′n for all
n > M can be constructed as the index sequences from two different segments in the same
F-chain [16]. Therefore, the space of F-chains is given by the quotient space X = Z/R. In
fact, this identification allows us to see the space of F-chains as a noncommutative space, as
was noted in [2]. In other words, one can define the C∗-algebra associated to the quotient
space X.

In what follows we review the construction of the C∗-algebra on X following the sketch
of Connes [2]. Consider the set

Zn = {(a0, . . . , an) | aj ∈ {0, 1} and aj = 1 �⇒ aj+1 = 0}.
These sets form an inverse system of sets:

· · · −→ Zn+1 −→ Zn −→ · · · −→ Z1

under the projection maps Zn+1 −→ Zn given by (a0, . . . , an, an+1) �→ (a0, . . . , an). Note
that the inverse limit lim←− Zn = Z is simply the set of all F-chains. On each Zn, there is an

equivalence relation Rn given by

(a0, . . . , an) ∼ (a′0, . . . , a′n) iff an = a′n. (2)

Let Xn = Zn/Rn be the set of all equivalence classes. Since each entries of sequences in Zn
are either 0 or 1, there are only two elements in Xn. Those two elements correspond to 0 or 1
in the final entry. Thus the space Xn cannot be described nontrivially by means of functions
with values in complex numbers, C. However, if we take operator-valued functions on Xn,
there exists a rich class of such functions. For this, each [x] ∈ Xn, one can associate a AF
Hilbert space l2x having elements of [x] for an orthonormal basis and the algebra is given by
the set of all functions on Xn with values in operators on l2x . Note that if the dimension of l2x
is k, then the algebra of operators on l2x is the algebra of all k × k matrices. More explicitly, if
x0( x1 resp.) represents the class in Zn with 0 (1 resp.) in the final entry, then the dimension
of l2x0

(l2x1
resp.) is the number of distinct elements in Zn that end with 0 (1 resp.). Let kn and

k′n be the dimension of l2x0
and l2x1

, respectively. Now the algebra of functions on [x0] ([x1]
resp.) with values in Mkn(C) (Mk′n (C) resp.) is simply Mkn(C) (Mk′n (C) resp.) and thus the
C∗-algebra An of operator-valued functions on Xn is identified withMkn(C)⊕Mk′n (C). Also
we have an inclusion map An −→ An+1 and it is uniquely determined by the equalities(

kn+1

k′n+1

)
=
(

1 1
1 0

)(
kn
k′n

)
. (3)

It allows embedding An as block matrices in An+1 i.e.(
R 0
0 S

)
�→
(
R 0 0
0 S 0
0 0 R

)
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where R ∈ Mkn(C) and S ∈ Mk′n (C). Now we have an inductive system of C∗-algebras:

A1 −→ A2 −→ · · · −→ An −→ · · · . (4)

Let A = lim−→ An be the inductive limit of the system. Then A is an AF algebra and is

considered as the C∗-algebra of X. In general, approximately finite C∗-algebra or AF algebra
is defined by an inductive limit of a sequence of AF C∗-algebras and such algebras can be
completely classified by their K-theory [20]. Note that the algebra A described above is also
known as Jones’ algebra [21, 22]. The inductive system (4) can be interpreted as an infinite
tower of algebras induced by the pair A1 ⊂ A2. From its construction, one can see that this
tower is the exact counterpart of the inflation of the F-chains. Here, we present a brief review on
the Jones index following Goodman [22] and explain the relationship between inflation of the
F-chains and the Jones index. The following method can be used to calculate the Jones indices
of the algebras associated to the spaces of general tilings which admit the inflations [23].

Let L(H) be the C∗-algebra of all bounded operators on a complex Hilbert space H . A
von Neumann algebra M on H is a ∗-subalgebra of L(H) such that M contains the identity
operator and M = (M ′)′, where M ′ = {T ∈ L(H) | T S = ST for all S ∈ M}. Note that the
topology ofM is different from the norm topology of the C∗-algebra L(H). A factor is a von
Neumann algebraM whose centre reduces to the scalar multiples of the identity. In particular,
if a factor M admits a normalized finite trace, then it is called a II1-factor. Let N ⊂ M be a
pair of II1-factors. Then the Jones index of N inM is defined to be

[M : N ] = dimN(L
2(M)) := TrM ′(IdL2(M))

where L2(M) is the Hilbert space completion of M with respect to the scalar product
〈x|y〉 = trace(x∗y), for x, y ∈ L2(M). The trace TrM ′ is defined by TrM ′(JxJ ) = trM(x),
where J : L2(M)→ L2(M) is the antilinear isometric involution, J (x) = x∗ and trM is the
trace onM . The (Jones) tower induced by the pair N ⊂ M is the nested sequence

1 ∈ N ⊂ M = M1 ⊂ M2 ⊂ · · · ⊂ Mn ⊂ Mn+1 ⊂ · · · (5)

of II1-factors with an appropriate embedding condition. If [M : N ] is finite, one can always
construct such a tower by takingM1 = JN ′J , M2 = JM ′J, . . . ,Mk = JM ′k−2J . This gives
an inductive system of II1-factors such that

[Mk+1 : Mk] = [M : N ].

It was shown in [21] that

[M : N ] ∈
{

4 cos2
(π
n

)∣∣∣ n ∈ N, n � 3
}
∪ [4,+∞). (6)

In the course of the proof, Jones constructed a special type of C∗-algebra associated to the
tower (5), which will be called a Jones algebra. The terminology is borrowed from [23]. Let
M∞ be the inductive limit of the tower (5). Then one can find a unique tracial state ‘Tr’ on
M∞ and a sequence of projections en ∈ M∞, i.e. en = e∗n = e2

n, such that:

(1) enem = emen for all n,m ∈ N, |n−m| > 1.
(2) emem±1em = [M : N ]−1em.
(3) Tr(xem+1) = [M : N ]−1Tr(x), for any x in the algebra generated by e1, . . . , em.

The first two conditions assert that the C∗-algebra generated by projections e1, . . . , em is a AF
C∗-algebra and the Jones algebra is the inductive limit of such algebras. Note that the weak
closure of the resulting algebra is a Von Neumann factor of type II1. Also the algebra depends
only on [M : N ]−1. In particular, if n = 5, then [M : N ] = 4 cos2 π

5 = ( 1+
√

5
2 )2 and the

corresponding Jones algebra is simply the C∗-algebra A of the space of F-chains. In this case
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the trace of projections belongs to Z⊕ Z and this leads to the study of the K-theory of an AF
algebra. Recall that A is an AF algebra and is classified by its K-theory.

Now, we present an explicit calculation ofK-theory of the AF algebra from the system (4)
based on Connes’ outline [2]. By applying basic properties ofK-theory [1,20,24] to system (4),
one can see that the K-theory of A is also determined by (3). Note that for each n,

Ki(An) = Ki(Mkn(C)⊕Mk′n (C)) =
{

Z⊕ Z if i = 0

0 if i = 1

and the positive cone is given by

K+
0 (An) = Z

+ ⊕ Z
+.

The map K0(An)→ K0(An+1) is uniquely determined by (3) and is represented by

(
1 1
1 0

)
.

Since

(
1 1
1 0

)
is invertible in Z⊕ Z, it is an isomorphism on K0(An) −→ K0(An+1) for all

n � 0 and we have

K0(A) = lim−→ K0(An)
∼= Z⊕ Z.

On the other hand,

(
1 1
1 0

)
is not invertible in Z

+⊕Z
+. To computeK+

0 (A), let (a, b) ∈ Z⊕Z

and then

K+
0 (A1) = {(a, b) ∈ Z⊕ Z | a + b � 0 and b � 0}.

Now, let

(
m11
n m12

n

m21
n m22

n

)
=
(

1 1
1 0

)n
, then

K+
0 (An) = {(a, b) ∈ Z⊕ Z | m11

n a +m12
n b � 0 and m21

n a � 0}.
Since (

m11
n m12

n

m21
n m22

n

)
=
(

1 1
1 0

)n
=
(
fn+1 fn
fn fn−1

)
with the defining relation

fn+1 = fn + fn−1 and f1 = f2 = 1

we have

K+
0 (An) = {(a, b) ∈ Z⊕ Z | fna + fn+1b � 0 and fn−1a + fnb � 0}

=
{
(a, b) ∈ Z⊕ Z | a +

fn+1

fn
b � 0

}
.

From this

K+
0 (A) = lim−→ K

+
0 (An) = {(a, b) ∈ Z⊕ Z | a + τb � 0}

where limn→∞ fn+1

fn
= τ is the Golden mean. Therefore, the space of F-chains is completely

characterized by the ordered group

(K0(A),K
+
0 (A)) = (Z2, {(a, b) ∈ Z⊕ Z | a + τb � 0}).

Recall that the noncommutative torus is the C∗-algebra generated by two operators u, v
subject only to

uv = e2π i%vu
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where % is a real number. It is well known that the K-theory of the noncommutative 2-
torus A% is given by Ki(A%)

∼= Z
2, where i = 0, 1. In particular, K0(A%) is isomorphic

to Z ⊕ %Z as ordered groups by a theorem of Pimsner and Voiculescu [27]. Furthermore,
the noncommutative torus can be embedded into a certain type of AF algebra as discussed in
Landi et al [28] recently. In the above, we have shown that the C∗-algebra of the space of
F-chains is an AF algebra and computed its K-groups. Furthermore, the Bratteli diagram of
the AF algebra satisfies the condition required by Landi et al ’s work with cn = 1 in their
notation [1,18]. Thus one might expect that the torusAτ can be embedded into the C∗-algebra
of the space of F-chains. As a dual picture, if we can realize the noncommutative torus as a
geometric object, then we may characterize the space of F-chains from the space associated
to the algebra Aτ . A precise relationship between the space of F-chains and the leaf space
of the Kronecker foliation on the torus will be established in section 4. Before that, we first
review the definition of the Kronecker foliation and study the correspondence between the
noncommutative torus and the Kronecker foliation in the next section.

3. The Kronecker foliation

In general, a foliation of codimension q on an n-dimensional manifold is a partition of the
manifold into p-dimensional connected submanifolds, where n = p + q. Such submanifolds
are called the leaves of the foliation. Locally the leaves look like a set of parallel planes
of codimension q in Euclidean space. The space of leaves can be understood as families of
solutions of systems of differential equations and the study of foliation is the study of the global
behaviour of such solutions. For example, a first-order differential equation is a vector field.
For a vector field without zeros, the orbits of the flow generated by the vector field form a 1D
foliation. See [25] for details on the theory of foliations.

It is well known that the 2-torus T
2 is the only oriented compact 2-dimensional manifold

which admits a non-singular codimension 1 foliation. Up to topological equivalence one can
classify smooth foliations of T

2 [25]. In particular, there is a foliation which contains no
closed leaves and this foliation is equivalent to the Kronecker foliation with irrational slope.
Let T

2 = S1 × S1 = R
2/Z2 with natural coordinates (x, y) ∈ R

2. For non-zero constants
a1 and a2, a smooth one-form ω = a1 dx + a2 dy on the torus defines a foliation on T

2. The
leaves of this foliation are the solutions of the differential equation

dy = −a1

a2
dx.

If a1
a2

is rational, then each leaf is closed and hence a circle on the torus. If a1
a2

is irrational, then

all the leaves are diffeomorphic to R and each leaf is dense in T
2. This foliation is called the

Kronecker foliation associated to a real number − a1
a2

. From now on, we will restrict ourselves

to the case when − a1
a2
= 1

τ
, where τ is the Golden mean. Each leaf in this case can be seen

as a straight line in R
2 with the fixed slope, y = 1

τ
x + b. Since a straight line y = 1

τ
x + b is

determined by its y-intercept, we see that the space of leaves of the foliation is parametrized
by the y-intercepts. On the torus, two lines 1

τ
x + b and 1

τ
x + b′ represent the same leaf if

b − b′ = 1
τ
n, for some integer n. This defines an equivalence relation on the y-intercepts

and the leaf space XF of the Kronecker foliation can be identified with the set of equivalence
classes. The topology on the space of leaves is the same as the quotient topology of S1 = R/Z

divided by the partition into orbits of the rotation given by z �→ z + 1
τ

, where z ∈ S1, and
hence there are no open sets in XF except ∅ and XF . Therefore, the leaf space has the trivial
topology as in the case of the space of F-chains.
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The Kronecker foliation can be obtained also from the suspension of diffeomorphisms [25].
Let ψτ : S1 → S1 be the diffeomorphism which is the rotation through angle 2π

τ
, i.e.

ψτ (z) = e
2π i
τ · z, z ∈ S1. The product manifold S1 × R is foliated by the leaves of the

form {z} ×R. This foliation on S1 ×R is invariant under the Z-action on S1 ×R: for z ∈ S1,
b ∈ R,

(z, b)n = (ψnτ (z), b + n) n ∈ Z. (7)

This means that the quotient S1 ×Z R
∼= T

2 carries a 1D foliation whose leaves are the image
of {z} × R under the quotient map S1 × R → T

2. Equivalently, the leaves are transverse
to the fibres of S1 ×Z R → R/Z ∼= S1. Thus the space of leaves of the foliation on T

2 are
parametrized by R together with the Z-action associated to the action of equation (7). This is
exactly the same relation as the one in the Kronecker foliation and hence the foliation obtained
via the diffeomorphism ψτ is equivalent to the Kronecker foliation on T

2 with the irrational
slope 1

τ
. This is in fact followed by the Denjoy’s theorem which asserts that if a foliation of

T
2 does not have compact leaves, then it is topologically equivalent to a foliation obtained

by a suspension of an irrational rotation of the circle. Also, Denjoy constructed examples of
foliations on T

2 with exceptional minimal sets and this motivated the study of minimal sets
of foliations of codimension one on compact manifolds of dimension �3. Here we briefly
review Denjoy’s example which is obtained by suspending the diffeomorphism ψτ : S1 → S1

with an exceptional minimal set [26]. In section 4, we will identify the set of all F-chains with
the exceptional minimal set. A minimal set E ⊂ S1 is the ‘smallest’ nonempty closed subset
among the invariant subsets under ψτ . That is, if E′ ⊂ E is closed and invariant subset then
eitherE′ = ∅ orE′ = E. A minimal set is called exceptional if it is homeomorphic to a subset
of the Cantor set on S1. The exceptional minimal set for ψτ is constructed in the following
manner. First, cut the circle S1 at all the points of an orbit {θn | n ∈ Z} of the given irrational
rotation. At the n cutting point, insert a segment Jn of length ln with

∑
ln <∞. Then we get

a new circle and the set S1 − ∪n∈ZJn = E is homeomorphic to the Cantor set and this is the
desired exceptional minimal set.

From the above construction of the Kronecker foliation, one can relate the C∗-algebra of
the foliation to the noncommutative torus. LetC(S1) be theC∗-algebra of continuous functions
on S1. Then the rotation ψτ : S1 → S1 induces the automorphism ψ∗τ : C(S1) → C(S1)

given by ψ∗τ (f ) = f ◦ ψτ , where f ∈ C(S1), or

(ψ∗τ f )(z) = (f ◦ ψτ )(z) = f (e
2π i
τ · z) z ∈ S1.

Let us denote the group of all automorphisms of C(S1) by Aut(C(S1)). Then the action of
equation (7) can be given as the group homomorphism α : Z→ Aut(C(S1)) which is given
by

(α(n)f )(z) := (αnf )(z) = (f ◦ ψnτ )(z) = f (e
2πni
τ · z).

Now theC∗-algebra of this action is the so-called crossed product C∗-algebraC(S1)�αZ [20].
As we have seen above, this algebra is generated by the rotation and the Z-action. More
explicitly, the C∗-algebra is represented on L2(S1) with generators U and V according to the
rotation and Z-action:

(Uf )(z) = zf (z) and (Vf )(z) = f (e 2π i
τ · z) f ∈ L2(S1) z ∈ S1.

It is easy to verify that the operators U and V satisfy the relation

UV = e
2πni
τ V U.

Hence the C∗-algebra C(S1)�α Z is identified with the noncommutative torus A 1
τ

and can be

regarded as the C∗-algebra on the leaf space of the Kronecker foliation with the slope 1
τ

. Also,
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this is Morita equivalent to the noncommutative torus Aτ [2] and hence its K-theory is given
by Ki(Aτ )

∼= Z
2, where i = 0, 1. In particular, K0(Aτ ) is isomorphic to Z⊕ τZ as ordered

groups as discussed in section 2.

4. Torus representation and the Kronecker foliation

We will establish a relation between the space of the F-chains and the leaf space of the Kronecker
foliation on the torus T

2 appearing in the torus representation [19].
An F-chain can be represented as a point in a 2-torus T

2 [19]. Here we will show that
all F-chains in an equivalent class can be represented as a leaf of the foliation on the torus.
First we construct a Fibonacci lattice (F-lattice) from an F-chain. An F-lattice is a 1D tiling
consists of two types of tiles L and S whose arrangements form an F-chain. The ratio of the
lengths of the two tiles, m(L) and m(S) is given by m(L)

m(S)
= τ . Figure 3 shows an F-lattice

(upper part of (a)) and a way of lifting it into a 2D hyperspace which is a direct product of two
1D spaces; the ‘parallel space’ R‖ and the ‘perp-space’ R⊥. The parallel space R‖ is a straight
line parallel to the F-lattice. The perp-space R⊥ is the 1D space perpendicular to R‖.

The coordinate of a vertex (F-lattice point; the boundary between two given consecutive
tiles) relative to any reference vertex can be expressed in the form nL m(L) + nS m(S), where
(nL, nS) ∈ Z

2, m(S) = sin θ andm(L) = cos θ with θ = arctan(1/τ). Therefore, the vertices
can be lifted into a square lattice of Z

2 as shown in the lower part of figure 3(a). All pairs
of adjacent vertices in the 1D tiling separated by a tile L or S are mapped onto neighbouring
vertices of a 2D square lattice in the x or the y directions respectively where the x-axis has
the slope −1/τ . The embedded step (thick solid line) in the 2D lattice by this lifting can be
covered by a strip parallel to the R‖ with width1 = cos θ + sin θ if the position of the strip is
well chosen.

For a given (infinite) F-chain, the ‘perpendicular space’ R⊥ coordinate t⊥ of the strip
(defined as the R⊥ coordinate of the bottom boundary of the strip), which covers the embedded
step completely, is uniquely determined5. Therefore, we can assign a t⊥ value for a given F-
chain. The R‖ coordinate t‖ of the chain is not uniquely determined but depends on the choice
of the vertex in the 1D tiling. Figure 3(a) shows two different values: t1,‖ for the triangle
vertex and t2,‖ for the circle vertex. In section 2, we mentioned that two sequences in Z which
are equivalent by R of equation (1) can be constructed from two different segments in the
same F-chain. In other words, two F-chains in an equivalence class can be considered as a
finite translation of each other. Since the translation in the R‖ direction corresponds to the
movement along the leaf in the torus representation, all F-chains in an equivalent class can be
represented as the points on the same leaf on the torus no matter what vertices we choose for
t‖.

Conversely, an F-lattice (hence an F-chain) can be obtained from a 2D square lattice by
the projection methods. The lattice sites of the 2D square structure can be projected onto the
1D parallel space, R‖ at the slope tan θ = 1/τ with respect to the horizontal rows of the square
lattices. Since the slope of the line is irrational, the projection of all 2D lattice points to R‖
form a dense set of points. If we restrict projections on R‖ to the points confined within a strip
which is parallel to R‖ and has a cross section 1 in R⊥ equal to the perp-space projection of
a square unit cell (1 = cos θ + sin θ ), then the projection to R‖ gives an F-lattice [29]. The

5 In the upper part of figure 3(a), only a finite part of the F-chain is shown. Therefore, the position of the strip which
covers the finite embedded step is not uniquely determined. All three strips in the figure cover the finite embedded
step. The highest strip shown in (b), whose lower boundary passes the lattice point, corresponds to the infinite F-
chain whose index sequence is (101010 . . .) while the lowest strip in (c) corresponds to (01010 . . .). Details will be
discussed later.
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Figure 3. The lifting of a Fibonacci chain (F-chain) into a 2D hyperspace. For a given F-chain, we
can construct a 1D tiling consists of two types of tiles L and S which can be lifted into a 2D square
lattice whose x-axis has the slope −1/τ with respect to the 1D tiling on R‖. The embedded step
(solid thick line) in the 2D lattice can be covered by a strip parallel to R‖ with width1 = cos θ+sin θ
when the position of the strip is well chosen. The perp coordinate t⊥ is given by the R⊥ coordinate
of the strip bottom. This value is uniquely determined for a given infinite F-chain. In the upper
part of (a), only a finite part of the F-chain is shown. Therefore, the position of the strip which
covers the finite embedded step is not uniquely determined. All three strips in (a)–(c) cover the
shown finite part but correspond to different (infinite) F-chains. The highest and the lowest strips,
shown in (b) and (c) respectively, correspond to the singular F-chains. The parallel coordinate t‖
of the F-chain depends on the choice of the vertex in the tiling.

movement of the strip along the perp-space R⊥ gives rise to rearrangement of tiles from one
perfect F-lattice to another and the strip is called the ‘window’ of the corresponding F-lattice.
In general, the windows should include one and only one boundary to produce a perfect F-
lattice. Figure 3 can be also used to illustrate the ‘projection methods’. Now we first choose
a window and select the 2D lattice points which are in the window. Then the projection of
those lattice points into the R‖ space gives the vertices of an F-lattice. The boundaries are
irrelevant to the projected structure unless they pass a 2D lattice point since all vertices of
the F-lattice are produced from the 2D lattice points inside the window (figure 3(a)). When
a boundary of the window intersects with a 2D lattice point, so does the other boundary as
shown in figure 3(b) since the width of the window is equal to the perp-space projection of
a square unit cell. If the window included both boundaries, the projection would produce an
extra vertex from the 2D unit cell denoted by hatching. On the other hands, if it excluded both,
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Figure 4. An F-chain can be obtained from the sequence of intersections between a line with slop
1/τ and the x and y axes. A regular line lr intersects . . . , y, x, y, y, x, y, x, y, y, x, y, . . . axes and
corresponds to a unique F-chain, . . . LSLLSLSLLSLL . . . . The singular line ls , which passes
through the origin, corresponds to the two different F-chains, Fs1 and Fs2 .

the projected lattice would miss a vertex. Therefore, the ‘proper’ windows must include one
and only one boundary. If we include the lower boundary as shown in figure 3(b), then we get
the tile arrangement ‘LS’ from the hatched unit cell, while we get the ‘SL’ arrangement for the
other case. In other words, there are two different F-lattices (and hence two different F-chains)
corresponding two different proper windows in spite of the R⊥ position of the window is the
same.

This ‘singularity’ for the windows whose boundaries pass the lattice points can be more
clearly understood in the cut-procedure. A leaf on the torus can produce an F-chains (but not an
F-lattice) directly (instead of going through a strip or a window) in the cut-procedure. Figure 4
illustrates a way to get an F-chain by this method from a square lattice in a 2D ‘hyperspace’.
We consider a 2D square lattice and the lines with the slope of 1/τ . (A straight line in a square
lattice can be considered as a representation of a leaf on the torus in the ‘extended’ scheme.)
We can produce an F-chain associated to the line in the following way. If the line intersects the
y-axis, we give the segment ‘L’ while we assign the segment ‘S’ when the line intersects with
the x-axis. For example, the line lr in figure 4 intersects . . . , y, x, y, y, x, y, x, y, y, x, y, . . .
axes and hence produces an F-chain Fr = . . . LSLLSLSLLSLL . . . . The correspondence
between a straight line and an F-chain is one-to-one except for the ‘singular’ line ls which
passes through the origin. For the singular case, the three lines, the parallel line ls , the x-axis
and the y-axis meet at a point (at the origin). Since ls meets both the x and the y axes at the
same time, a pair of segments (one S and one L segments) should be assigned at the origin.
However, assigning two segments at the same point is impossible. This ‘singularity’ can be
resolved by moving the line ls infinitesimally. If we move ls slightly upward, it first meets the
x-axis and then the y-axis and ‘SL’ is assigned at the origin. Therefore, the parallel line ls
produces the F-chain Fs1 in figure 4 when it is moved upward infinitesimally. In contrast, if
we move ls slightly downward, it meets the y-axis first and then meets the x-axis. Therefore,
‘LS’ is assigned at the origin and we have Fs2 in this case.
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Now, the space of F-chains can be parametrized by the y-axis in R since the line y = 1
τ
x+b

is determined by the y-intercepts. As in the leaf space of the Kronecker foliation, two F-
chains that correspond to two lines 1

τ
x + b and 1

τ
x + b′ are in the same equivalence class if

b− b′ = n/τ . This is because the arrangements of intersections from the two lines, hence the
two corresponding F-chains, are the same up to the finite translation (by n

√
τ 2 + 1/τ ) when

b− b′ = n/τ . If two F-chains F and F ′ are the same up to a finite translation, they are in the
same class by the equivalence relation R of equation (1). Let (an) and (a′n) be index sequences
of the two F-chains with (an) = i(F, α) and (a′n) = i(F ′, α′)where α and α′ are the segments
at the origins of F and F ′ respectively. Then, there is a segment α′′ ∈ F within a finite distance
from the origin such that (a′′n) = i(F, α′′) is identical to (a′n) since F ′ is a finite translation of
F . Now, we have an integerM such that an = a′n for all n > M since the inflation will make
two segments α and α′′ belong to the same segment in Fn for sufficiently large n.

We have shown that the space of F-chains is the same as the leaf space of Kronecker
foliation except for the singular leaf which corresponds to the two F-chains. One may think
that the two F-chains corresponding to the singular leaf are of the same class. The only
difference between the two chains is at the origin, and can be removed by local surgery; we
can obtain one chain from the other by flipping a pair of segments at the origin. Furthermore,
one is a mirror image of the other and related by a 180◦ rotation. However, they are not
in the same class by the equivalence relation R of equation (1). If we construct the index
sequences of the two F-chains from the segment at the origin, one chain corresponds to the index
sequence (an) = (0101010101 . . .) and the other corresponds to (a′n) = (1010101010 . . .) (see
section 4). In other words, an = δn,2k for one chain while a′n = δn,2k+1 for the other chain.
Clearly an and a′n are different for all n and they are in different classes.

Since we have two different F-chains on the singular leaf (which is only one leaf on the
Kronecker foliation) on T

2, we have a surjective map from the space of F-chains to the space
of leaves. Both spaces have trivial topology and the map is open and continuous. Now, the
surjectiveness corresponds to the fact that the map from the C∗-algebra of leaves of foliation
(noncommutative torus) to the C∗-algebra of F-chains (we already showed in section 2 that it
is an AF algebra) is injective. In this sense our discussion above can be seen as a dual picture
of the embedding of noncommutative torus into a certain type of AF algebra.

In the following section, we construct such an AF algebra by introducing an extended
space of leaves which is isomorphic to the space of F-chains.

5. An extended space of leaves

Since the map from the space of F-chains to the leaf space of the Kronecker foliation
is surjective, we cannot retrieve all F-chains from the leaves on T

2. However, there
is only one leaf which corresponds to more than one class of F-chains. Furthermore,
this singular leaf corresponds to only two classes of F-chains. Therefore, if we assign
one class of F-chain to every leaf (including the singular leaf), all F-chains except only
one class of F-chains are obtained from the leaf space. For example, if we assign Fs2
in figure 4 to the singular leaf, then Fs1 -class is ‘missing’ but all other F-chains are in
the leaf space on T

2. In this section, we show that an extended leaf space, which is
isomorphic to the space of F-chains, is naturally obtained if we construct the equivalence
relations on the leaf space using the equivalence relation Rn of the finite subsequences of
the index sequences given by equation (2). In the limit of the length of the subsequences
goes to infinity, we get the extended leaf space which is the sum of two spaces; the
leaf space on T

2 and the space consists of one leaf corresponding to the ‘missing’
class.



R14 H-C Jeong et al

In section 2, the index subsequences of the F-chains are constructed using the inflation
and the AF algebra is introduced as an inductive limit of the finite algebra on the space of the
finite subsequences of the index sequences. There were only two sets of equivalence classes
on the space of the finite subsequences since the last entries of sequences an in Zn can have
only two values, either 0 or 1. Here, we consider the space of straight lines in the cut-procedure
of figure 4. Except for the singular lines which pass the lattice points, each line produces one
and only one F-chain. The equivalence relation between the lines is constructed according
to the equivalence relation Rn for their F-chains (equation (2)). As before, the straight lines
are parametrized by the y-intercepts. To define the equivalence relation between the lines, we
consider the index sequences of their F-chains i(F(b), α) where α is the segment at x = 0
(at the y-axis) and F(b) is the F-chain corresponds to the line y = 1

τ
x + b. The index a0

of the original (uninflated) F-chain F is 0 for every b ∈ W0 := (0, 1) since the type of the
segment at the origin is always L by the definition of the cut-procedure (at x = 0, the leaf
y = 1

τ
x + b always cut the y-axis). Figure 5(a) illustrates this: any b ∈ W0 corresponds to the

L segment in F at the origin. However, the type of segment at the origin in the inflated F-chains
F1 can be both L and S depending on the value of b. As shown in figure 5(b), the segment
arrangement in F at the origin is LS for b ∈ A = (1/τ 2, 1), and LL for b ∈ B = (0, 1/τ 2).
Since LS becomes L and L becomes S by inflation, the segment type in F1 at the origin is
L for b ∈ A and S for b ∈ B. Therefore, W0 is partitioned by two open intervals, A and
B, and a boundary point b1 = 1/τ 2 for n = 1. Let us denote the union of the two open
intervals by W1; W1 = (0, 1/τ 2) ∪ (1/τ 2, 1) = W0 − b1. Note that the boundary point b1

is given by the intersection between W0 and the line which passes the 2D lattice point (1,
1). For this boundary line y = 1

τ
x + (1 − 1/τ), the segment type at the origin of F1 is

not well defined, that is, b1 is the singular point for F1. Similarly, we can partition W1 by
considering the doubly inflated F-chains F2. Since an S-segment in F1 becomes anL-segment
in F2, the interval B in figure 5(b) is not divided for n = 2 (interval C in figure 5(c)). The
interval A in figure 5(b) which represents the class of a1 = 0 is divided by two intervals
by the line which passes the 2D lattice point (2, 2). Therefore, we get the three intervals,
W2 = (0, 1/τ 2) ∪ (1/τ 2, 2/τ 2) ∪ (2/τ 2, 1) for n = 2 as shown in figure 5(c). In general, an
interval corresponding to an = 1 becomes an interval corresponding to an+1 = 0 in the next
step while an interval corresponding to an = 0 will be divided as two neighbouring intervals,
one for an+1 = 0 and the other for an+1 = 1. Therefore, the partitioned interval for the nth
inflated chain, which will be denoted byWn, is given by the union of fn+2 intervals with fn+1

L-intervals and fn S-intervals:

Wn = Wn,L +Wn,S

where

Wn,L =
fn+1∑
k=1

In,Lk Wn,S =
fn∑
k=1

In,Sk .

Here, In,Lk (In,Sk resp.) is the kth interval ofL-type (S-type resp.) inWn and fk is the Fibonacci
number introduced in section 2. The lengths of the L and the S-intervals in Wn are 1/τn and
1/τn+1 respectively.

Figure 6 shows the arrangement of In,Lk and In,Sk in Wn. From figure 5, we see that the
intervals are divided by the lines which pass the 2D lattice point (r, s) such that 0 < s−r/τ < 1.
Let us arrange such lattice points according to the ‘parallel’ distance d(r, s) = τ

τ+2 (r + s/τ)
and denote them as Pk = (rk, sk) where d(rk′ , sk′) < d(rk, sk) for k′ < k. Now, let lk be the
line which passes the lattice point Pk . Then the fn+1 lines, lfn+2 , . . . , lfn+3−1, divide the fn+1

L-intervals in Wn. For example, l1 which passes P1 = (1, 1) divides the L-interval in W0, l2



Noncommutative torus from Fibonacci chains via foliation R15

A : . . . L . . . A : . . . L S L . . .
B : . L S L L S L . .

. . L

1

L . .
. L S L . .

A : . S L L S L S L L .
B : . . . L S L L S L .
C : . L S L L S L L S .

. L S L

1

L S L . .
. . . L S L S . .
. . L S L S L . .

. L S

2

L . .
. . L L . .
. S L L . .

A : . S L L S L S L L S .
B : . . . L S L L S L S .
C : . L S L S L L S L L .
D : . L S L L S L S L L .
E : . L S L L S L L S L .

. L S L

1

L S L . .
. . . L S L L . .
. . L L S L S . .
. . L S L L S . .
. . L S L S L . .

. L S

2

L . .
. . L S . .
. . L L S .
. . L S L .
. S L L . .

. . L

3

. .
. . L . .
. L S L .
. . L . .
. . S L .

(a) (b)

(c)

(d)

A L

x

y

L
B

A

L L L L

L L

S S

S

x

y

S

L

C
B

A

L L L L
L L L L

L L L L L

S S
S S

S S S

x

y

L
L
S

E
D
C
B

A

L L L L L L
L L L L L L

L L L L L L
L L L L L

L L L L L L

S S S
S S S S

S S S S
S S S

S S S S

S
L
S
L
L

Figure 5. A sequence of partitions of the transversal (1, 0) using the cut-procedure and the inflations
of the F-chain. Fn+1 is the inflation of Fn as in figure 2.

which passes P2 = (2, 2) divides the L-interval in W1, and l3 and l4 which pass P3 = (3, 2)
and P4 = (4, 3) divide the L-intervals in W2. Note that l1 divides the L-interval of W0 such
that the lower part of it becomes an S-interval inW1 while l2 divides the L-interval inW1 such
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Figure 6. A sequence of partitions of the transversal for the construction of a sequence of AF
algebras. An L-interval in Wn is divided by an L- and an S-interval in Wn+1 while an S-interval
becomes anL-interval without partition in the next step. For even n, the lower part of anL-interval
becomes an S-interval in the (n + 1)th inflation while the upper part becomes an S-interval for odd
n.

that the upper part of it becomes an S-interval inW2. The L-intervals inW2 are divided by the
lines l3 and l4 as the way that the L-interval of W0 was divided. In fact, the lower part of an
L-interval becomes an S-interval for even n while the upper part of an L-interval becomes an
S-interval for odd n by an inflation6. Successive application of these processes produces the
sequence of partitions shown in figure 6 and the two groups of intervalsWn,L andWn,S can be
obtained for every n.

From the construction above, we can see that the set of all intervals inWn is isomorphic to
Zn in section 2. For a given sequence zn = (a1, a2, . . . , an) in Zn, we can choose an interval
inWn in the following manner. First, choose the interval L (S resp.) inW1 if a1 = 0 (a1 = 1
resp.). Then choose the interval L (S resp.) in W2, which is a subinterval of the previously
chosen one if a2 = 0 (a2 = 1 resp.). For an = 0 (an = 1 resp.), choose the interval L (S
resp.) which is a subinterval of the chosen interval inWn−1. Then, there is always an interval
in Wn for a given sequence in Zn since an interval S in Wk becomes an interval L in Wk+1.
Conversely, an interval inWn can be indexed by a sequence in Zn by recording the types of the
intervals inWk (for k = 1, . . . , n) which the chosen interval belongs to. Now we can identify
W := limn→∞Wn with the set Z = limn→∞ Zn and hence W is the set of all F-chains. Note
that the boundary points excluded from the nth partitioned interval,W0−Wn, are the first fn+1

orbit points of the irrational rotation −1/τ from 1 − 1/τ = 1/τ 2. In other words, the lines
through lattice points correspond to the orbit of the rotation defined by the diffeomorphism

6 This can be shown by two steps. (1) AllL-intervals inWn are divided in the same pattern. (2) A particularL-interval
in Wn is divided as in the way mentioned in the text. To prove (1), let lk and lk′ be the two boundary lines of an
L-interval in Wn and pass the lattice points Pk = (rk, sk) and Pk′ = (rk′ , sk′ ) respectively. The irrationality of the
slope guarantees the same |1r| = |rk − rk′ | and |1s| = |sk − sk′ | for all L-intervals inWn; all of them are given by
|1r| = fn and |1s| = fn−1 due to the relations fn−1−fn/τ = (−1)n 1

τn
. Now, theL-intervals inWn can be mapped

to pairs of 2D lattice points which are identical up to a lattice translation. In other words, relative arrangements of
the lattice points from the ‘boundary’ lattice points are the same for all L-intervals in Wn and hence divided in the
same pattern by the boundary lines in the following inflations. The statement (2) can be shown with the bottom-most
interval for even n and the topmost interval for odd nwith an inductive way. Here we outline the proof for even n. The
odd n case can be proven similarly. For n = 2, the bottom-most interval is an L-interval and the upper boundary is
given by the line which passes the lattice point (1, 1). Let the bottom-most interval of the n = 2k case be anL-interval.
Then the size of the interval is τ−n and the upper boundary line passes the lattice point (fn, fn−1). This interval
will be divided by the lines which pass the lattice points (r, s) such that 0 < r − s/τ < τ−n. Since fn/fn−1 is the
‘best’ rational approximant of τ [30], the lattice point (fn+2, fn+1) has the smallest parallel distance and hence the line
which pass it divides the interval first. The ‘perpendicular’ distance of this lattice point is fn+1 − fn+2/τ = τ−(n+2)

and we see that the lower partition of the interval becomes an S-interval in Wn+1. Furthermore, this implies that the
bottom-most interval for n + 2 is L-type and the above argument can be applied inductively for all even n.
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ψτ introduced in section 3. In fact the construction of W is exactly the same as that of the
exceptional minimal set for the suspension of diffeomorphismψτ . Thus the setW or the set of
all F-chains is the exceptional minimal set and also the set Z is homeomorphic to the Cantor
set as asserted in [2, 31].

Now, let us give an equivalence relation R̃n onWn as Rn of equation (2) on Zn. Then the
set of equivalence classes X̃n = Wn/R̃n has only two elements, Wn,L and Wn,S , which have
fn+1 and fn intervals respectively. By taking these fn+1 and fn intervals as the bases of the
Wn,L and Wn,S classes respectively, we recover the sequence of finite algebras described in
section 2. In the limit of n goes to infinity, we obtain an AF algebra which is the same as the
algebra in section 2.

We now show that the space X̃ = limn→∞ X̃n, which is isomorphic to the space of F-
chains X, is given by the quotient space obtained from W mod out by the ‘leaf equivalence
relation’: b ∼ b′ iff b−b′ = n/τ for some integer n, and call X̃ as ‘extended leaf space’. First,
note that an S-interval inWn is not divided but simply becomes an L-interval inWn+1 while an
L-interval in Wn is divided into two intervals, one L-interval and one S-interval in Wn+1. An
important consequence of the partition sequence of figure 6 is that all L-intervals in Wn are
divided in the same pattern inWn+1 (see footnote 6 also). Therefore, all intervals of the same
type inWn are divided in the same pattern inWm for allm > n. This observation provides the
relation between two points, bz and bz′ , in an equivalence class which can be indexed by two
sequences z = (ak) and z′ = (a′k)with am = a′m for allm � n. If In (I ′n resp.) is the interval in
Wn, to which bz (b′z resp.) belongs, the relative distance from a reference point (say, the centre)
of In to bz is the same as that from the centre of I ′n to bz′ because am = a′m for allm � n. Since
the lengths of L-intervals and S-intervals inWn are τ−n and τ−(n+1) respectively, the distance
between bz and bz′ is given by

bz − bz′ = kLτ−n + kSτ
−(n+1)

= (−1)n
[
(kSfn+1 − kLfn)1

τ
+ (kLfn−1 − kSfn)

]

= k1

τ
− k2 (8)

with integers k1 = (−1)n(kSfn+1 − kLfn) and k2 = (−1)n(kLfn−1 − kSfn). Here kL and kS
are the number of L- and S-intervals between the two chosen intervals inWn and we used the
relation τ−k = (−1)k(fk−1 − fk/τ). These are exactly the same condition for the same leaf
on the torus in section 3.

We should note that the space obtained by the limit of the above procedure is not the space
of leaves of the Kronecker foliation on T

2. If we follow the very bottom intervals of W in
figure 6, we get the F-chain whose index sequence is given by (010101010 . . .) while we get
(001010101 . . .) when we follow the very top intervals. Therefore, the limit points of these
two sequences, 0 and 1 represent different classes. In the foliation on the torus, above two
leaves had to be identified since 0 and 1 are identical point in S1. This was the reason that the
singular leaf on the torus corresponds two distinct F-chains.

6. Concluding remarks

In this paper, we studied the space of F-chains from the perspective of NCG. We defined the
equivalence relation of the F-chains based on their index sequences and the space of F-chains
X is given as the quotient set Z/R of all F-chains Z divided by the equivalence relation R
of equation (1). This space is exactly the same as the space of Penrose tiling considered by
Connes [2]. From the calculation of its K-theory, we know that the K0-group of Penrose
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tiling (and hence F-chains) is isomorphic to that of the noncommutative torus. Furthermore,
an F-chain can be parametrized as a point on the torus T

2 [19]. These facts suggest a strong
connection between the noncommutative torus and the space of F-chains. However, a C∗-
algebra on the space of F-chains cannot be a noncommutative torus. From Connes’ work [2],
we know that the construction of a nontrivial algebra on the space of F-chains gives rise to an
AF algebra whose K1 vanishes while the K1 of the noncommutative torus does not.

Here, we studied the exact relationship between the noncommutative torus and the AF
algebra on the space of F-chains. Using the torus representation and the cut-procedure, we
found a surjective map from the space of F-chains to the space of leaves on Kronecker foliation.
The surjectiveness of the map and the embedding of the C∗-algebra of noncommutative torus
to an AF algebra was explicitly shown by considering a sequence of finite algebra constructed
on the finite partitions In,Lk and In,Sk , the quotient space Wn/Rn. In the limit of n goes to
infinity, the quotient space is identified with the space of F-chains. This is a dual approach to
the way of embedding of the C∗-algebra of the space of leaves on Kronecker foliation into the
C∗-algebra of the space of F-chains.

We think the current method of finding the relationship between the space of F-chains and
the space of leaves of Kronecker foliation can be applied to the space of Penrose tilings. As
an F-chain can be represented as a leaf on T

2, which is a line parallel to the 1D space spanned
by a 2D vector (cos θ, sin θ) with tan θ = 1/τ , a Penrose tiling can be represented as a plane
on T

5 which are parallel to the 2D space spanned by two 5D vectors, (1, c1, c2, c3, c4) and
(1, s1, s2, s3, s4) where ck = cos

(
2π
5 k

)
and sk = sin

(
2π
5 k

)
[29]. Recall that a leaf on T

2,
y = 1

τ
x + b is parametrized by the y-intercept which can be considered as the position of

the origin of the leaf. Similarly, a Penrose tiling can be parametrized by the position of the
origin of the plane. By introducing the equivalence relation between the positions of the planes
according to the equivalence relationship of their Penrose tiling, we can construct a space of
wrapping 2D plans (‘2D leaf’) in the 5D space. From the identity between the space of F-chains
and that of Penrose tiling, one may expect that this space should be very similar to the space
of leaves of Kronecker foliation. However, a preliminary study shows that this may not be the
case. The properties of the singular plane in this space, which passes through the origin of the
5D space, may behave quite differently from the singular leaf of F-chains. The singular plane
corresponds to five different Penrose tilings but their index sequences are the same and given
by (0, 0, 0, . . .). Therefore, all of them are in the same equivalence class unlike the F-chains
from the singular leaf. Further work on this issue may have practical application for the study
of quasicrystal structures. The decapod defects, which can be a seed for rapid quasicrystal
growth [32], are known to be related to the singularity of the plane which passes the origin of
the 5D space [33]. If future studies establish the role of the higher-dimensional singular ‘leaf’
in the hyper lattice space for the space of general quasiperiodic tilings, they may provide a
new clue to solve the old puzzle of the topological character of the decapod defects [29].

We hope the current study on the space of F-chains provides a motive for the proliferation of
noncommutative geometrical approaches for the properties of Penrose tiling and quasicrystals.
At the moment, the progress on the dynamical properties of the quasicrystalline structure seems
to be slow. There have been many studies on the dynamical properties on the 1D quasiperiodic
systems but the conventional extensions of such studies to the higher-dimensional systems have
not been able to provide a general theory on the dynamics of quasicrystals. We speculate that
the study on the dynamics of 1D quasiperiodic system from the noncommutative geometrical
aspect may provide a new tool for the investigation to the dynamics of quasicrystals. As
shown in this paper, both the space of F-chains (1D quasiperiodic systems) and the space
of Penrose tiling (2D quasicrystalline lattice) show the same nontrivial structure only with a
noncommutative geometrical approach.
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In summary, we show that the noncommutative torus can be obtained from the space of
F-chains via foliation. We hope that this understanding will help to enhance the understanding
of the dynamics of the quasicrystalline structure in future.
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